Package: RFlocalfdr 0.8.5
RFlocalfdr: Significance Level for Random Forest Impurity Importance Scores
Sets a significance level for Random Forest MDI (Mean Decrease in Impurity, Gini or sum of squares) variable importance scores, using an empirical Bayes approach. See Dunne et al. (2022) <doi:10.1101/2022.04.06.487300>.
Authors:
RFlocalfdr_0.8.5.tar.gz
RFlocalfdr_0.8.5.zip(r-4.5)RFlocalfdr_0.8.5.zip(r-4.4)RFlocalfdr_0.8.5.zip(r-4.3)
RFlocalfdr_0.8.5.tgz(r-4.4-any)RFlocalfdr_0.8.5.tgz(r-4.3-any)
RFlocalfdr_0.8.5.tar.gz(r-4.5-noble)RFlocalfdr_0.8.5.tar.gz(r-4.4-noble)
RFlocalfdr_0.8.5.tgz(r-4.4-emscripten)RFlocalfdr_0.8.5.tgz(r-4.3-emscripten)
RFlocalfdr.pdf |RFlocalfdr.html✨
RFlocalfdr/json (API)
# Install 'RFlocalfdr' in R: |
install.packages('RFlocalfdr', repos = c('https://parsifal9.r-universe.dev', 'https://cloud.r-project.org')) |
- imp20000 - 20000 importance values
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 12 months agofrom:c4847f6b2d. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 09 2024 |
R-4.5-win | NOTE | Oct 09 2024 |
R-4.5-linux | NOTE | Oct 09 2024 |
R-4.4-win | NOTE | Oct 09 2024 |
R-4.4-mac | NOTE | Oct 09 2024 |
R-4.3-win | NOTE | Oct 09 2024 |
R-4.3-mac | NOTE | Oct 09 2024 |
Exports:count_variablesdetermine_cutoffdetermine.Cdsnf.fitfit.to.data.setfit.to.data.set.wrapperlocal.fdrmy_PIMPmy_ranger_PIMPmy.dsnmy.test1funplotQpropTrueNullByLocalFDRpsnqsnrun.it.importancessignificant.genes
Dependencies:fitdistrpluslatticeMASSMatrixMatrixModelsminpack.lmmnormtnumDerivquantregrandomForestrangerRcppRcppEigenRFlocalfdr.datarlangsnSparseMsurvivalvita